کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4974221 | 1365523 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Ensemble extreme learning machine and sparse representation classification
ترجمه فارسی عنوان
مجموعه ای از ماشین های یادگیری افراطی و طبقه بندی نمایندگی اسپرد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
Extreme learning machine (ELM) combining with sparse representation classification (ELM-SRC) has been developed for image classification recently. However, employing a single ELM network with random hidden parameters may lead to unstable generalization and data partition performance in ELM-SRC. To alleviate this deficiency, we propose an enhanced ensemble based ELM and SRC algorithm (En-SRC) in this paper. Rather than using the output of a single ELM to decide the threshold for data partition, En-SRC incorporates multiple ensembles to enhance the reliability of the classifier. Different from ELM-SRC, a theoretical analysis on the data partition threshold selection of En-SRC is given. Extension to the ensemble based regularized ELM with SRC (EnR-SRC) is also presented in the paper. Experiments on a number of benchmark classification databases show that the proposed methods win a better classification performance with a lower computational complexity than the ELM-SRC approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 353, Issue 17, November 2016, Pages 4526-4541
Journal: Journal of the Franklin Institute - Volume 353, Issue 17, November 2016, Pages 4526-4541
نویسندگان
Jiuwen Cao, Jiaoping Hao, Xiaoping Lai, Chi-Man Vong, Minxia Luo,