کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4974221 1365523 2016 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ensemble extreme learning machine and sparse representation classification
ترجمه فارسی عنوان
مجموعه ای از ماشین های یادگیری افراطی و طبقه بندی نمایندگی اسپرد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
Extreme learning machine (ELM) combining with sparse representation classification (ELM-SRC) has been developed for image classification recently. However, employing a single ELM network with random hidden parameters may lead to unstable generalization and data partition performance in ELM-SRC. To alleviate this deficiency, we propose an enhanced ensemble based ELM and SRC algorithm (En-SRC) in this paper. Rather than using the output of a single ELM to decide the threshold for data partition, En-SRC incorporates multiple ensembles to enhance the reliability of the classifier. Different from ELM-SRC, a theoretical analysis on the data partition threshold selection of En-SRC is given. Extension to the ensemble based regularized ELM with SRC (EnR-SRC) is also presented in the paper. Experiments on a number of benchmark classification databases show that the proposed methods win a better classification performance with a lower computational complexity than the ELM-SRC approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 353, Issue 17, November 2016, Pages 4526-4541
نویسندگان
, , , , ,