کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4974231 | 1365523 | 2016 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Blind image quality assessment for Gaussian blur images using exact Zernike moments and gradient magnitude
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Features that exhibit human perception on the effect of blurring on digital images are useful in constructing a blur image quality metric. In this paper, we show some of the exact Zernike moments (EZMs) that closely model the human quality scores for images of varying degrees of blurriness can be used to measure these distortions. A theoretical framework is developed to identify these EZMs. Together with the selected EZMs, the gradient magnitude (GM), which measures the contrast information, is used as a weight in the formulation of the proposed blur metric. The design of the proposed metric consists of two stages. In the first stage, the EZM differences and the GM dissimilarities between the edge points of the test image and the same re-blurred image are extracted. Next, the mean of the weighted EZM features are then pooled to produce a quality score using support vector machine regressor (SVR). We compare the performance of the proposed blur metric with other state-of-the-art full-reference (FR) and no-reference (NR) blur metrics on three benchmark databases. The results using Pearson׳s correlation coefficient (CC) and Spearman׳s ranked-order correlation coefficient (SROCC) for the LIVE image database are 0.9659 and 0.9625 respectively. Similarly, high correlations with the subjective scores are achieved for the other two databases as well.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 353, Issue 17, November 2016, Pages 4715-4733
Journal: Journal of the Franklin Institute - Volume 353, Issue 17, November 2016, Pages 4715-4733
نویسندگان
Chern-Loon Lim, Raveendran Paramesran, Wissam A. Jassim, Yong-Poh Yu, King Ngi Ngan,