کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4974263 | 1365524 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Tensor factorisation for narrowband single channel source decomposition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In many subspace signal decomposition methods such as principal component analysis (PCA) or its extension, singular spectrum analysis (SSA), particularly meant for processing of single channel signals, there is need for a robust determination and validation of the number of sources. Here, we attempt to find a relation between the number of sources within single channel mixtures and the rank of a symmetric tensor constructed from such mixtures by adjusting the embedding dimension. This leads to a new approach for decomposition of single channel mixtures using tensor factorisation. Consequently, the effect of model order is analysed for simulated narrowband data. The inherent frequency diversity of the time series has also been effectively exploited in selection of the desired subspace. The proposed method has been applied to both simulated and real data. The results have been discussed and compared with those of a number of benchmark algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 354, Issue 7, May 2017, Pages 3152-3169
Journal: Journal of the Franklin Institute - Volume 354, Issue 7, May 2017, Pages 3152-3169
نویسندگان
Samaneh Kouchaki, Saeid Sanei,