کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4974629 | 1365542 | 2016 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Echo state network based predictive control with particle swarm optimization for pneumatic muscle actuator
ترجمه فارسی عنوان
کنترل پیش بینی مبتنی بر شبکه اکو دولتی با بهینه سازی ذرات ذره برای عملگر عضله پنوماتیک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
To realize a high-accurate trajectory tracking control of the Pneumatic Muscle Actuator (PMA), a comprehensive single-layer neural network (SNN) and Echo State Neural Network (ESN) based predictive control with particle swarm optimization (PSO) is proposed, where PSO optimizes the weight coefficients of the SNN and the ESN state is updated by the online Recursive Least Square (RLS) algorithm for predictive control. Based on Lyapunov theory, the learning convergence theorem is established to guarantee the stability of the closed-loop system. The proposed control algorithm is employed for the trajectory tracking control of PMA. The interface between the xPC target and the virtual instrument was established to realize the real-time control and to make the control more accurate and stable. Both simulations and experiments were performed to verify the proposed methods. The experiments were conducted on the real PMA system, which was connected with the xPC target system. The results demonstrate the validity of PMA as well as the effectiveness of the novel control algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 353, Issue 12, August 2016, Pages 2761-2782
Journal: Journal of the Franklin Institute - Volume 353, Issue 12, August 2016, Pages 2761-2782
نویسندگان
Jian Huang, Jin Qian, Lei Liu, Yongji Wang, Caihua Xiong, Songhyok Ri,