کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4974823 | 1365551 | 2014 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Direct projection to latent variable space for fault detection
ترجمه فارسی عنوان
پیش بینی مستقیم به فضای متغیر پنهان برای تشخیص خطا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
Partial least squares (PLSs) often require many latent variables (LVs) T to describe the variations in process variables X correlated with quality variables Y, which are obtained via the traditional nonlinear iterative PLS (NIPALS) optimal solution based on (X, Y). Total projection to latent structures (T-PLSs) performs further decomposition to extract LVs Ty directly related to Y from T, which are obtained by the PCA optimal solution based on the predicted value of Y. Inspired by T-PLS, combined with practical process characteristics, two fault detection approaches are proposed in this paper to solve problems encountered by T-PLS. Without the NIPALS, (X, Y) are projected into the latent variable space determined by main variations of Y directly. Furthermore, the structure and characteristics of several modified methods in statistical analysis are studied based on calculation procedures of solving PCA, PLS and T-PLS optimization problems, and the geometric significance of the T-PLS model is demonstrated in detail. Simulation analysis and case studies both indicate the effectiveness of the proposed approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 351, Issue 3, March 2014, Pages 1226-1250
Journal: Journal of the Franklin Institute - Volume 351, Issue 3, March 2014, Pages 1226-1250
نویسندگان
Jing Hu, Chenglin Wen, Ping Li, Tianqi Yuan,