کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4974823 1365551 2014 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Direct projection to latent variable space for fault detection
ترجمه فارسی عنوان
پیش بینی مستقیم به فضای متغیر پنهان برای تشخیص خطا
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
Partial least squares (PLSs) often require many latent variables (LVs) T to describe the variations in process variables X correlated with quality variables Y, which are obtained via the traditional nonlinear iterative PLS (NIPALS) optimal solution based on (X, Y). Total projection to latent structures (T-PLSs) performs further decomposition to extract LVs Ty directly related to Y from T, which are obtained by the PCA optimal solution based on the predicted value of Y. Inspired by T-PLS, combined with practical process characteristics, two fault detection approaches are proposed in this paper to solve problems encountered by T-PLS. Without the NIPALS, (X, Y) are projected into the latent variable space determined by main variations of Y directly. Furthermore, the structure and characteristics of several modified methods in statistical analysis are studied based on calculation procedures of solving PCA, PLS and T-PLS optimization problems, and the geometric significance of the T-PLS model is demonstrated in detail. Simulation analysis and case studies both indicate the effectiveness of the proposed approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 351, Issue 3, March 2014, Pages 1226-1250
نویسندگان
, , , ,