کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4974842 1365551 2014 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability of stochastic neural networks of neutral type with Markovian jumping parameters: A delay-fractioning approach
ترجمه فارسی عنوان
پایداری شبکه های عصبی تصادفی از نوع خنثی با پارامتر پریدن مارکوویچ: یک روش تاخیری-کسری کردن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
This paper deals with the stochastically asymptotic stability in the mean square for a new class of stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays. The jumping parameters are modeled as a continuous-time, finite-state Markov chain. Based on the Lyapunov-Krasovskii functional, stochastic analysis theory and the delay-fractioning approach, the stochastically asymptotic stability of the considered neural network has been achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. The obtained results are shown to be much less conservative via constructing a new Lyapunov-Krasovskii functional and the idea of “delay fractioning”. Finally, four numerical examples are provided to show the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 351, Issue 3, March 2014, Pages 1553-1570
نویسندگان
, , ,