کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4974846 | 1365551 | 2014 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural-network-based decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown time-delayed interaction faults
ترجمه فارسی عنوان
کنترل غلط گسل بر پایه عصبی-شبکه بر اساس یک طبقه از سیستم های بزرگ مقیاس غیر خطی با گسل های تعامل ناگهانی با زمان ناشناخته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
This paper proposes an adaptive approximation design for the decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown multiple time-delayed interaction faults. The magnitude and occurrence time of the multiple faults are unknown. The function approximation technique using neural networks is employed to adaptively compensate for the unknown time-delayed nonlinear effects and changes in model dynamics due to the faults. A decentralized memoryless adaptive fault-tolerant (AFT) control system is designed with prescribed performance bounds. Therefore, the proposed controller guarantees the transient performance of tracking errors at the moments when unexpected changes of system dynamics occur. The weights for neural networks and the bounds of residual approximation errors are estimated by using adaptive laws derived from the Lyapunov stability theorem. It is also proved that all tracking errors are preserved within the prescribed performance bounds. A simulation example is provided to illustrate the effectiveness of the proposed AFT control scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 351, Issue 3, March 2014, Pages 1615-1629
Journal: Journal of the Franklin Institute - Volume 351, Issue 3, March 2014, Pages 1615-1629
نویسندگان
Sung Jin Yoo,