کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4975011 | 1365557 | 2015 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Sparse adaptive channel estimation problem is one of the most important topics in broadband wireless communications systems due to its simplicity and robustness. So far many sparsity-aware channel estimation algorithms have been developed based on the well-known minimum mean square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS),which are robust under Gaussian assumption. In non-Gaussian environments, however, these methods are often no longer robust especially when systems are disturbed by random impulsive noises. To address this problem, we propose in this work a robust sparse adaptive filtering algorithm using correntropy induced metric (CIM) penalized maximum correntropy criterion (MCC) rather than conventional MMSE criterion for robust channel estimation. Specifically, MCC is utilized to mitigate the impulsive noise while CIM is adopted to exploit the channel sparsity efficiently. Both theoretical analysis and computer simulations are provided to corroborate the proposed methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 352, Issue 7, July 2015, Pages 2708-2727
Journal: Journal of the Franklin Institute - Volume 352, Issue 7, July 2015, Pages 2708-2727
نویسندگان
Wentao Ma, Hua Qu, Guan Gui, Li Xu, Jihong Zhao, Badong Chen,