کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4975060 | 1365560 | 2015 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A data-driven adaptive ILC for a class of nonlinear discrete-time systems with random initial states and iteration-varying target trajectory
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a new data-driven adaptive ILC (DDAILC) for a class of nonlinear discrete-time systems by introducing a pointwise dynamical linearization approach in the iteration direction. For the nonlinear systems, which cannot be linearly parameterized, the proposed DDAILC is capable of achieving a perfect performance without requiring any identical conditions exposed both on the initial state and on the reference trajectory. It is a data-driven control approach since only the I/O data is required for the control system design and analysis. The parameter updating law is constructed to estimate the inverse values of the system׳s unknown partial derivatives of the nonlinear system with respect to the control inputs, which are utilized to compute the learning gain of control law further. The control input is updated by using both the information of reference trajectory of the current operation as a feedback term and the input signals in previous operations as a feedforward term. Extension results to MIMO nonlinear discrete-time systems are provided further. Both theoretical analysis and simulation results verify the effectiveness of the proposed data-driven AILC approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 352, Issue 6, June 2015, Pages 2407-2424
Journal: Journal of the Franklin Institute - Volume 352, Issue 6, June 2015, Pages 2407-2424
نویسندگان
Ronghu Chi, Zhongsheng Hou, Shangtai Jin,