کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4975210 1365566 2014 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive neural control of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays
ترجمه فارسی عنوان
کنترل عصبی تطبیقی ​​سیستم های غیر خطی تصادفی با دینامیک غیرمولد و تاخیر دولت های مختلف زمان
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
In this paper, a novel adaptive control scheme is investigated based on the backstepping design for a class of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. The radial basis function neural networks are used to approximate the unknown nonlinear functions obtained by using Ito differential formula and Young׳s inequality. The unknown time-varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov-Krasovskii functions and introducing available dynamic signal. It is proved that all signals in the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded (SGUUB) in mean square or the sense of four-moment. Simulation results illustrate the effectiveness of the proposed design.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 351, Issue 6, June 2014, Pages 3182-3199
نویسندگان
, , ,