کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4975215 | 1365566 | 2014 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variable-structure-systems based approach for online learning of spiking neural networks and its experimental evaluation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Raising the level of biological realism by utilizing the timing of individual spikes, spiking neural networks (SNNs) are considered to be the third generation of artificial neural networks. In this work, a novel variable-structure-systems based approach for online learning of SNN is developed and tested on the identification and speed control of a real-time servo system. In this approach, neurocontroller parameters are used to define a time-varying sliding surface to lead the control error signal to zero. To prove the convergence property of the developed algorithm, the Lyapunov stability method is utilized. The results of the real-time experiments on the laboratory servo system for a number of different load conditions including nonlinear and time-varying ones indicate that the control structure exhibits a highly robust behavior against disturbances and sudden changes in the command signal.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 351, Issue 6, June 2014, Pages 3269-3285
Journal: Journal of the Franklin Institute - Volume 351, Issue 6, June 2014, Pages 3269-3285
نویسندگان
Y. Oniz, O. Kaynak,