کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4975430 | 1365573 | 2014 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A robust super-resolution method with improved high-frequency components estimation and aliasing correction capabilities
ترجمه فارسی عنوان
یک روش فوق العاده با وضوح قوی با ارزیابی مولفه های فرکانس بالا و قابلیت اصلاح آلیاژینگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In this paper, we have proposed a robust super-resolution high-frequency component estimation (RS-HFCE) method, which can efficiently estimate lost high-frequency components and correct aliasing effects of low-frequency components of an image. The fundamental principle of operation of the proposed method is based on the idea that, when a baseband band-limited image signal of known bandwidth in a high-resolution lattice is iteratively low-pass filtered in the frequency domain, the unknown values in the lattice can be interpolated, thus correcting the aliasing for the low-frequency components. If this process is done along with adjusting the amplitudes of the known pixel values, some high-frequency components of an image are automatically extrapolated. In order to provide simultaneous edge preservation and noise removal capabilities of the super-resolved images, an improved version of an adaptive Perona-Malik (PM) model is incorporated into the process. One of the characteristics of the proposed method is its high level of tolerance capabilities to reconstruction errors and noise caused by an increase in the reconstruction scaling factors. High quality images of higher resolution are still appreciably reconstructed when greater magnification factors are used. From a couple of experiments on real images, and using both subjective and objective image quality assessment measures, it is demonstrated that the proposed method outperforms most of other classical methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 351, Issue 1, January 2014, Pages 513-527
Journal: Journal of the Franklin Institute - Volume 351, Issue 1, January 2014, Pages 513-527
نویسندگان
Baraka Maiseli, Chuan Wu, Jiangyuan Mei, Qiang Liu, Huijun Gao,