کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4975587 | 1365580 | 2011 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Approximate mining of global closed frequent itemsets over data streams
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper focuses on how to efficiently find the global Approximate Closed Frequent Itemsets (ACFIs) over streams. To achieve this purpose over a multiple, continuous, rapid and time-varying data stream, a fast, incremental, real-time and little-memory-cost algorithm should be regarded. Based on the max-frequency window model, a Max-Frequency Pattern Tree (MFP-Tree) structure is established to maintain summary information over the global stream. Subsequently, a novel algorithm Generating Global Approximate Closed Frequent Itemsets on Max-Frequency Window model (GGACFI-MFW) is proposed to update the MFP-Tree with high efficiency. The case studies show the efficiency and effectiveness of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 348, Issue 6, August 2011, Pages 1052-1081
Journal: Journal of the Franklin Institute - Volume 348, Issue 6, August 2011, Pages 1052-1081
نویسندگان
Lichao Guo, Hongye Su, Yu Qu,