کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4975823 | 1365592 | 2011 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A genetically modified fuzzy linear discriminant analysis for face recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper addresses the face recognition problem through a modification of the Fuzzy Fisherface classification method. In conventional methods, the relationship of each face to a class is assumed to be crisp. The Fuzzy Fisherface method introduces a gradual level of assignment of each face pattern to a class, using a membership grading based upon the K-Nearest Neighbor (KNN) algorithm. This method was further modified by incorporating the membership grade of each face pattern into the calculation of the between-class and within-class scatter matrices, termed as Complete Fuzzy LDA (CFLDA). The present work aims at improving the assignment of class membership by improving the parameters of the membership functions. A genetic algorithm is employed to optimize these parameters by searching the parameter space. Furthermore, the genetic algorithm is used to find the optimal number of nearest neighbors to be considered during the training phase. The experiments were performed on the Olivetti Research Laboratory (ORL) face image database and the results show consistent improvement in the recognition rate when compared to the results from other techniques applied on the same database and reported in literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 348, Issue 10, December 2011, Pages 2701-2717
Journal: Journal of the Franklin Institute - Volume 348, Issue 10, December 2011, Pages 2701-2717
نویسندگان
Amar Khoukhi, Syed Faraz Ahmed,