کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4976197 | 1365609 | 2011 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimization of fuzzy model using genetic algorithm for process control application
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A technique for the modeling of nonlinear control processes using fuzzy modeling approach based on the Takagi-Sugeno fuzzy model with a combination of genetic algorithm and recursive least square is proposed. This paper discusses the identification of the parameters at the antecedent and consequent parts of the fuzzy model. For the antecedent fuzzy parameters, genetic algorithm is used to tune them while at the consequent part, recursive least squares approach is used to identify the system parameters. This approach is applied to a process control rig with three subsystems: a heating element, a heat exchanger and a compartment tank. Experimental results show that the proposed approach provides better modeling when compared with Takagi Sugeno fuzzy modeling technique and the linear modeling approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Franklin Institute - Volume 348, Issue 7, September 2011, Pages 1717-1737
Journal: Journal of the Franklin Institute - Volume 348, Issue 7, September 2011, Pages 1717-1737
نویسندگان
Rubiyah Yusof, Ribhan Zafira Abdul Rahman, Marzuki Khalid, Mohd Faisal Ibrahim,