کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4977543 1451935 2017 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterisation of a ground penetrating radar antenna in lossless homogeneous and lossy heterogeneous environments
ترجمه فارسی عنوان
تشریح یک آنتن رادار نفوذ زمین در محیط های ناهمگن همگن و ناپایدار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


- 3D FDTD numerical simulations of radiated energy from a GPR antenna.
- Performance in lossless homogeneous and realistic lossy heterogeneous environments.
- Radiated energy in lossless dielectric basic guide for lossy heterogeneous behaviour.
- Magnitude and pattern shape differences between infinitesimal dipole and antenna models.
- Notable peaks and dips in E- and H-plane patterns in lossy heterogeneous environments.

Directly measuring the radiation characteristics of Ground Penetrating Radar (GPR) antennas in environments typically encountered in GPR surveys, presents many practical difficulties. However it is very important to understand how energy is being transmitted and received by the antenna, especially for areas of research such as antenna design, signal processing, and inversion methodologies. To overcome the difficulties of experimental measurements, we used an advanced modelling toolset to simulate detailed three-dimensional Finite-Difference Time-Domain (FDTD) models of GPR antennas in realistic environments. A semi-empirical soil model was utilised, which relates the relative permittivity of the soil to the bulk density, sand particle density, sand fraction, clay fraction and volumetric fraction of water. The radiated energy from the antenna was studied in lossless homogeneous dielectrics as well as, for the first time, in lossy heterogeneous environments. Significant variations in the magnitude and pattern shape were observed between the lossless homogeneous and lossy heterogeneous environments. Also, despite clear differences in time domain responses from simulations that included only an infinitesimal dipole source model and those that used the full antenna model, there were strong similarities in the radiated energy distributions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 132, March 2017, Pages 221-226
نویسندگان
, ,