کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4977632 1451928 2017 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Short communicationSparse-based estimation performance for partially known overcomplete large-systems
ترجمه فارسی عنوان
عملکرد برآورد براساس مقیاس کوتاه برای سیستم های بزرگ که به طور کامل شناخته شده اند بیش از حد شناخته شده است
کلمات کلیدی
بیش از حد کامل مدل خطی بیزی، عملکرد برآورد آستانه، فضای قبل از دانش، سیستم های بزرگ،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی

We assume the direct sum ⟨A⟩⊕⟨B⟩ for the signal subspace. As a result of post-measurement, a number of operational contexts presuppose the a priori knowledge of the LB-dimensional “interfering” subspace ⟨B⟩ and the goal is to estimate the LA amplitudes corresponding to subspace ⟨A⟩. Taking into account the knowledge of the orthogonal “interfering” subspace ⟨B⟩⊥, the Bayesian estimation lower bound is derived for the LA-sparse vector in the doubly asymptotic scenario, i.e. N, LA, LB → ∞ with a finite asymptotic ratio. By jointly exploiting the Compressed Sensing (CS) and the Random Matrix Theory (RMT) frameworks, closed-form expressions for the lower bound on the estimation of the non-zero entries of a sparse vector of interest are derived and studied. The derived closed-form expressions enjoy several interesting features: (i) a simple interpretable expression, (ii) a very low computational cost especially in the doubly asymptotic scenario, (iii) an accurate prediction of the mean-square-error (MSE) of popular sparse-based estimators and (iv) the lower bound remains true for any amplitudes vector priors. Finally, several idealized scenarios are compared to the derived bound for a common output signal-to-noise-ratio (SNR) which shows the interest of the joint estimation/rejection methodology derived herein.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 139, October 2017, Pages 70-74
نویسندگان
, ,