کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4977849 1452012 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Template-matching for text-dependent speaker verification
ترجمه فارسی عنوان
تطبیق الگو برای تایید بلندگو وابسته به متن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gaussian Mixture Models (GMM) or Deep Neural Networks (DNN), as a prior step to estimating i-vectors or speaker factors. GMMs focus on implicitly modeling phonetic information of acoustic features while DNNs focus on explicitly modeling phonetic/linguistic units. For text-dependent speaker verification, DNN-based systems have considerably outperformed GMM for fixed-phrase tasks. However, both approaches ignore phone sequence information. In this paper, we aim at exploiting this information by using Dynamic Time Warping (DTW) with speaker-informative features. These features are obtained from i-vector models extracted over short speech segments, also called online i-vectors. Probabilistic Linear Discriminant Analysis (PLDA) is further used to project online i-vectors onto a speaker-discriminative subspace. The proposed DTW approach obtained at least 74% relative improvement in equal error rate on the RSR corpus over other state-of-the-art approaches, including i-vector and JFA.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Speech Communication - Volume 88, April 2017, Pages 96-105
نویسندگان
, , , ,