کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497921 862950 2014 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates
ترجمه فارسی عنوان
استنتاج بیضه کارآمد از مدل های جریان زیر سطحی با استفاده از نمونه برداری نستله و جایگزین های هرج و مرج چند ضلعی
کلمات کلیدی
مدلهای جریان زیرزمینی، نمونه برداری نشت، گسترش هرج و مرج چندجملهای، ترویج مقرراتزدایی، کمترین زاویه رگرسیون
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• Nested sampling (NS) is proposed for Bayesian prior model selection.
• The NS algorithm is accelerated using a two-stage MCMC sampling.
• A response surface is built for cheap evaluation of approximate likelihood function.
• Nested sampling is applied for calibration of several subsurface flow problems.

An efficient Bayesian calibration method based on the nested sampling (NS) algorithm and non-intrusive polynomial chaos method is presented. Nested sampling is a Bayesian sampling algorithm that builds a discrete representation of the posterior distributions by iteratively re-focusing a set of samples to high likelihood regions. NS allows representing the posterior probability density function (PDF) with a smaller number of samples and reduces the curse of dimensionality effects. The main difficulty of the NS algorithm is in the constrained sampling step which is commonly performed using a random walk Markov Chain Monte-Carlo (MCMC) algorithm. In this work, we perform a two-stage sampling using a polynomial chaos response surface to filter out rejected samples in the Markov Chain Monte-Carlo method. The combined use of nested sampling and the two-stage MCMC based on approximate response surfaces provides significant computational gains in terms of the number of simulation runs. The proposed algorithm is applied for calibration and model selection of subsurface flow models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 269, 1 February 2014, Pages 515–537
نویسندگان
, , ,