کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
499072 | 863026 | 2009 | 16 صفحه PDF | دانلود رایگان |

We begin the mathematical study of the k-method utilizing the theory of Kolmogorov n-widths. The k-method is a finite element technique where spline basis functions of higher-order continuity are employed. It is a fundamental feature of the new field of isogeometric analysis. In previous works, it has been shown that using the k-method has many advantages over the classical finite element method in application areas such as structural dynamics, wave propagation, and turbulence.The Kolmogorov n-width and sup–inf were introduced as tools to assess the effectiveness of approximating functions. In this paper, we investigate the approximation properties of the k-method with these tools. Following a review of theoretical results, we conduct a numerical study in which we compute the n-width and sup–inf for a number of one-dimensional cases. This study sheds further light on the approximation properties of the k-method. We finish this paper with a comparison study of the k-method and the classical finite element method and an analysis of the robustness of polynomial approximation.
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 198, Issues 21–26, 1 May 2009, Pages 1726–1741