کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4993356 1457619 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of Prandtl number on the linear stability of compressible Couette flow
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Effect of Prandtl number on the linear stability of compressible Couette flow
چکیده انگلیسی
Accurate prediction of laminar to turbulent transition in high-speed flows is a challenging task. Compressibility, and the resultant large variations in the transport properties can affect the transition process significantly. In this paper, we study the influence of Prandtl number, the ratio of momentum to heat diffusivity, in Couette flows at high Mach numbers. It is a part of an ongoing research programme to isolate and understand the transport property effects on the stability of high-speed flows. As a first step, we neglect the high-temperature effects and vary the Prandtl number in the range 0.9 to 0.2, by changing the relative magnitudes of viscosity and conductivity. A temporal linear stability analysis shows that the variation of phase speed with Prandtl number leads to synchronization between two acoustic modes, with peaks in growth rate at the synchronization points. Two types of branching patterns are observed depending on the Prandtl number, and the branch type determines which of the two modes is destabilized and which one is stabilized due to synchronization. Further, the mode shapes are either retained as earlier or interchanged between the two acoustic modes depending on the branching pattern. The stability diagrams for varying Mach and Reynolds numbers show a destabilizing role of decreasing the Prandtl number, both in terms of increased disturbance growth rates, and of larger regions of instability in the parameter space. It also results in a significant reduction in the critical Reynolds number of the flow, especially at high Mach numbers with wall cooling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Fluid Flow - Volume 61, Part B, October 2016, Pages 553-561
نویسندگان
, , , ,