کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
499430 863044 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probabilistic equivalence and stochastic model reduction in multiscale analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Probabilistic equivalence and stochastic model reduction in multiscale analysis
چکیده انگلیسی

This paper presents a probabilistic upscaling of mechanics models. A reduced-order probabilistic model is constructed as a coarse-scale representation of a specified fine-scale model whose probabilistic structure can be accurately determined. Equivalence of the fine- and coarse-scale representations is identified such that a reduction in the requisite degrees of freedom can be achieved while accuracy in certain quantities of interest is maintained. A significant stochastic model reduction can a priori be expected if a separation of spatial and temporal scales exists between the fine- and coarse-scale representations. The upscaling of probabilistic models is subsequently formulated as an optimization problem suitable for practical computations. An illustration in stochastic structural dynamics is provided to demonstrate the proposed framework.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 197, Issues 43–44, 1 August 2008, Pages 3584–3592
نویسندگان
, ,