کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
500141 | 863074 | 2006 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A highly stable and accurate computational method for eigensolutions in structural dynamics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A new computational method for the linear eigensolution of structural dynamics is proposed. The eigenvalue problem is theoretically transformed into a specific initial value problem of an ordinary differential equation. Based on the physical meaning of the sign count of the dynamic stiffness matrix, a stability control device is designed and combined with the fourth-order Runge-Kutta method. The resulting method finds the eigenvalues and eigenvectors at the same time, with high accuracy and high stability. Numerical examples show that the proposed method still gives high accuracy solutions when there is a great difference in magnitude among the eigenvalues, and also when some eigenvalues are very close to each other.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 195, Issues 33â36, 1 July 2006, Pages 4050-4059
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 195, Issues 33â36, 1 July 2006, Pages 4050-4059
نویسندگان
Zhaohui Qi, D. Kennedy, F.W. Williams,