کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5004096 1461189 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance analysis of improved iterated cubature Kalman filter and its application to GNSS/INS
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Performance analysis of improved iterated cubature Kalman filter and its application to GNSS/INS
چکیده انگلیسی
In order to improve the accuracy and robustness of GNSS/INS navigation system, an improved iterated cubature Kalman filter (IICKF) is proposed by considering the state-dependent noise and system uncertainty. First, a simplified framework of iterated Gaussian filter is derived by using damped Newton-Raphson algorithm and online noise estimator. Then the effect of state-dependent noise coming from iterated update is analyzed theoretically, and an augmented form of CKF algorithm is applied to improve the estimation accuracy. The performance of IICKF is verified by field test and numerical simulation, and results reveal that, compared with non-iterated filter, iterated filter is less sensitive to the system uncertainty, and IICKF improves the accuracy of yaw, roll and pitch by 48.9%, 73.1% and 83.3%, respectively, compared with traditional iterated KF.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 66, January 2017, Pages 460-468
نویسندگان
, , , , ,