کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5004140 1461187 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images
ترجمه فارسی عنوان
هوش مصنوعی مبتنی بر بهبود طبقه بندی الگوهای جریان دو فازی با ویژگی استخراج شده از تصاویر به دست آمده است
کلمات کلیدی
الگوی جریان گاز مایع، پردازش تصویر، منطق فازی، ماشین بردار پشتیبانی، تجزیه و تحلیل مولفه اصلی،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی
Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 68, May 2017, Pages 425-432
نویسندگان
, ,