| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 5004178 | 1461191 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Batch process monitoring based on multiple-phase online sorting principal component analysis
ترجمه فارسی عنوان
نظارت بر فرآیند دسته ای بر اساس تجزیه و تحلیل مولفه های مرتب سازی آنلاین چند مرحله ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نظارت بر فرآیند دسته ای، چند مرحله ای، شماره فاز، تجزیه و تحلیل مولفه اصلی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
Existing phase-based batch or fed-batch process monitoring strategies generally have two problems: (1) phase number, which is difficult to determine, and (2) uneven length feature of data. In this study, a multiple-phase online sorting principal component analysis modeling strategy (MPOSPCA) is proposed to monitor multiple-phase batch processes online. Based on all batches of off-line normal data, a new multiple-phase partition algorithm is proposed, where k-means and a defined average Euclidean radius are employed to determine the multiple-phase data set and phase number. Principal component analysis is then applied to build the model in each phase, and all the components are retained. In online monitoring, the Euclidean distance is used to select the monitoring model. All the components undergo online sorting through a parameter defined by Bayesian inference (BI). The first several components are retained to calculate the T2 statistics. Finally, the respective probability indices of PT2 is obtained using BI as the moving average strategy. The feasibility and effectiveness of MPOSPCA are demonstrated through a simple numerical example and the fed-batch penicillin fermentation process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 64, September 2016, Pages 342-352
Journal: ISA Transactions - Volume 64, September 2016, Pages 342-352
نویسندگان
Zhaomin Lv, Xuefeng Yan, Qingchao Jiang,
