کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5006533 | 1461480 | 2017 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms
ترجمه فارسی عنوان
یک سیستم هوشمند برای اندازه گیری کیفیت کشمش طلایی سفید با استفاده از دو الگوریتم یادگیری ماشین مقایسه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
In this research, an expert system is provided for measuring and recognizing the quality and purity of mixed (pure-impure) raisins using bulk raisins' images. For this purpose, by utilizing a machine vision setup 1400 images of the raisins were captured in the several ranges of mixture (from 5 to 50%). Then, totally 146 textural features were obtained using four methods of gray-level histograms, gray level co-occurrence matrix (GLCM), gray level run-length (GLRM) matrix, and local binary pattern (LBP). Principal Components Analysis (PCA) was used in order to find the optimum features from the extracted features. Accordingly, Artificial Neural Network (ANN) and Support Vector Machine (SVM) were used for classifying the mixtures. In comparison to ANN, using top 50 features, SVM classifier had more efficient and accurate classification results (averagely 92.71%). The results of the proposed approach can be used in designing a system for purity and quality measuring of raisins.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 107, September 2017, Pages 68-76
Journal: Measurement - Volume 107, September 2017, Pages 68-76
نویسندگان
Navab Karimi, Ramin Ranjbarzadeh Kondrood, Tohid Alizadeh,