کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5006556 | 1461487 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Measurement forecast of anomalous threshold voltages in BCD LV submicron n-MOSFETs with two artificial intelligence methods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this study, two intelligent methodologies were used to estimate the anomalous threshold-voltage (Vth) measured behaviors in sub-micrometer Bipolar-CMOS-DMOS (BCD) low-voltage (LV) MOSFETs by using the grey system (GS) GM (1,1) model and a fuzzy-neural network (FNN). This paper describes the implementation procedures of these two models for making Vth predictions. Moreover, discrepant comparisons between the GS and FNN output data are also demonstrated. Eventually, only the outputs of FNN can have the complex action of reverse short-channel property. Then, it will be developed to analyze the Vth inclination of submicron n-channel MOSFETs due to the device geometric effect. A comparison between the measured characteristics of Vth and the characteristics of Vth predicted by the FNN shows good agreement for a wide range of channel lengths, widths and bias conditions. And, the maximum error percentage was less than 0.08%. As such, the developed procedure may be well suited for the data estimation of the complicated BSIM-model parameters in foundry fabrications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 100, March 2017, Pages 93-98
Journal: Measurement - Volume 100, March 2017, Pages 93-98
نویسندگان
Shen-Li Chen, Dun-Ying Shu,