کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5006690 | 1461483 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Application of pattern recognition in gear faults based on the matching pursuit of a characteristic waveform
ترجمه فارسی عنوان
استفاده از تشخیص الگو در گسل دنده بر اساس دنباله یابی یک شکل موج مشخص
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
چرخ دنده، استخراج شکل موج مشخص تشخیص الگو،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
Aiming at the issue of recognizing the damage pattern of gear signals, a new matching method based on the morphological characteristics of the vibration waveforms was proposed in this paper. The signals of different types of gear faults share the same modulated frequency; therefore, only whether a gear is damaged or not can be identified from the frequency domain. However, it is difficult to recognize the different fault types of the gears. There are significant differences among the signal waveforms in the time domain of different fault types; thus, research on the recognition of the types of gear-damaged faults is conducted using the repeated characteristic waveforms of the same fault type based on the morphological characteristics of the gear fault signal. The signal morphological characteristics of different gear fault types were extracted using a searching algorithm, and then the matching effect was achieved from the basic atom library, which was constructed by the multi-stage characteristic waveform after an optimized process by the method optimal direction (MOD). Finally, the simulation signals of four types of different gear fault types and real engineering signals were processed using this method, and the effectiveness of the method was proved.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 104, July 2017, Pages 212-222
Journal: Measurement - Volume 104, July 2017, Pages 212-222
نویسندگان
Lingli Cui, Tianchang Yao, Yu Zhang, Xiangyang Gong, Chenhui Kang,