کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5012846 1462820 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecast of hourly global horizontal irradiance based on structured Kernel Support Vector Machine: A case study of Tibet area in China
ترجمه فارسی عنوان
پیش بینی تابش افقی جهانی ساعتی براساس ماشین بردار پشتیبانی از هسته ساختاری: مطالعه موردی منطقه تبت در چین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
چکیده انگلیسی
Various applications of forecasting effective global horizontal irradiance play increasingly vital role in grid-connected photovoltaic installations, but suffer from forecasting inaccuracy and prohibitively expensive computational cost. Although Support Vector Machine (SVM) is one of the most powerful forecasting approaches, it does not provide an interpretable model. This motivates penalized variable selection methods to be introduced to SVM to select important variables. However, in some forecasting problems, there are some underlying logic or hierarchical structure such as heredity principle among the variables. Penalized Kernel SVM approaches do not take heredity principles into consideration when enforcing sparsity. This paper investigates structural variable selection in Kernel SVM based approach which pursues heredity principle and sparsity simultaneously. To achieve heredity principle, both optimization and procedure based structural variable selection approaches are studied in the Kernel SVM. Computationally, we derive fast and simple-to-implement algorithms to perform structural variable selection and solar irradiance forecasting. Furthermore, Support Vector Machines Information Criterion is utilized to select the kernel parameters to guarantee the model consistency. Real data experiments directly reveal that our proposed KSVM-SVS based approach following heredity principle delivers superior performances in terms of forecasting accuracy comparing with other competitors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 142, 15 June 2017, Pages 307-321
نویسندگان
, ,