کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5021976 1469473 2017 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capability
ترجمه فارسی عنوان
تنظیم نانوبلورهای کربن در کامپوزیت های شیشه ای / اپوکسی برای بهبود سختی بین لایه و قابلیت تشخیص ترک
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی
An electric field is used to align carbon nanofibres (CNFs) in the matrix of a glass-fibre reinforced-polymer (GFRP) composite to simultaneously improve the (a) delamination toughness, (b) electrical conductivity, and (c) damage-sensing capability. The CNFs are added to the epoxy resin prior to the manufacture of the GFRP composites. To align the CNFs, an alternating current (AC) electric field of 30 V/mm at 10 kHz is applied across the GFRP sheet throughout the matrix-curing process. The electromechanical force induced by the electric field, applied in the through-thickness direction of the composite sheet, rotates and aligns the CNFs in the direction of the applied electric field prior to the gelation of the epoxy matrix. After curing, the resultant aligned, 'chain-like', microstructure of the CNFs in the epoxy matrix significantly enhances both the interlaminar fracture toughness and the through-thickness electrical conductivity of the GFRP composite. Specifically, the addition of 0.7 vol% of randomly-orientated CNFs in the GFRP composite yielded an ∼50% and 25% increase in the values of the mode I fracture toughness pertinent to the initiation, GIci, and steady-state growth, GIcss, of delamination crack, respectively, compared to the control GFRP composite. The alignment of the CNFs, in the transverse direction to the direction of the crack growth, increases the mode I toughness values of GIci and GIcss by ∼100% and ∼80%, respectively, compared to the control GFRP composite. These significant increases are attributable to multiple toughening mechanisms, including debonding of the CNFs from the matrix, void growth of the epoxy matrix, pull-out and rupture of the CNFs. Further, the electric-field induced alignment of the CNFs, in the through-thickness direction, increases the out-of-plane electrical conductivity of the GFRP by about twenty-six times, compared to the GFRP composite containing randomly-orientated CNFs. Of particular interest, the damage-sensing capacity is enhanced for the GFRP composite with aligned CNFs in the epoxy matrix, which stems from the greatly increased out-of-plane electrical conductivity, as confirmed by a modelling study. Therefore, this present work has identified a new strategy to develop GFRP composites with greatly improved delamination toughness, electrical conductivity, and higher crack-detection sensitivity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Composites Science and Technology - Volume 152, 10 November 2017, Pages 46-56
نویسندگان
, , , , , , ,