کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5025451 | 1470587 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Time series prediction using bayesian filtering model and fuzzy neural networks
ترجمه فارسی عنوان
پیش بینی سری با استفاده از مدل فیلترینگ بیزی و شبکه های عصبی فازی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
چکیده انگلیسی
Time series prediction is a challenging research topic, especially for multi-step-ahead prediction. In this paper, a novel multi-step-ahead time series prediction model is proposed based on combination of the Bayesian filtering model (BFM) and the type-2 fuzzy neural network (FNN). Recently, the studies demonstrate the type-2 FNN model is a promising strategy for multi-step-ahead time series prediction, at the same time, the BFM is an recursion-based sequence information processing approach, which has been used effectively for prediction, filtering and smooth of time series data. In this paper, we consider to use the recursion-based BFM to enhance performance of the FNN-based direct prediction model. A combination model named the BFM2FNN is developed to predict multi-step-ahead time series data. The simulation and comparison results show that the proposed model is more effectiveness and robustness.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - International Journal for Light and Electron Optics - Volume 140, July 2017, Pages 104-113
Journal: Optik - International Journal for Light and Electron Optics - Volume 140, July 2017, Pages 104-113
نویسندگان
Qinkun Xiao,