کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5025540 1470587 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Face synthesis based on parts-based sparse component analysis face representation
ترجمه فارسی عنوان
سنتز چهره بر اساس تجزیه و تحلیل مولفه های جزئی مبتنی بر قطعات نمایندگی چهره
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی
Face synthesis has become a highly challenging task due to illumination, face expression variation and occlusion. The point of such technique is to efficiently represent face. Recently, sparse component analysis and parts-based representation are two widely used paradigms for face representation. In this paper, we propose a probabilistic generative model for face representation towards face synthesis, which simultaneously takes advantage of the robustness of sparse component analysis and the flexibility of parts-based representation. For a given image, we project the image on the trained model and obtain the projection coefficients. Finally, a new face is reconstructed according to the learned model and projection coefficients. This model is driven by data and is a function over hidden variable and model parameters in essence. As a result, it is specifically good at representing face images. The learned face parts prior is reasonable, continuous and flexible. To validate the eff ; ;ectiveness of the proposed method on face synthesis, we perform experiments in two applications: face restoration and learning to smile. The experimental results show its advantages.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - International Journal for Light and Electron Optics - Volume 140, July 2017, Pages 843-852
نویسندگان
, , ,