کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5025762 | 1470597 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Model selection for Gaussian mixture model based on desirability level criterion
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The expectation maximization (EM) algorithm is the most enduring way to estimate the parameters of Gaussian mixture models. However, use the EM algorithm needs to know in advance the true number of mixing components. Therefore, unless this key information is available, it is usually not straightforward to perform this algorithm. On the other hand, its performance highly depends on the initial parameters. To alleviate these problems, a new model selection criterion, i.e., the desirability level criterion, is proposed to choose the number of components. In particular, we proposed a variable step until find either coincides with the actual number or slightly exceeds it, which maximize the value of the desirability level criterion that provides an efficient index to quantify the distance between the Gaussian mixture model fits the observation data. Furthermore, unwanted components can be suppressed by setting the threshold of the desirability level criterion. Numerical examples are provided to illustrate the effectiveness of our desirability level criterion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - International Journal for Light and Electron Optics - Volume 130, February 2017, Pages 797-805
Journal: Optik - International Journal for Light and Electron Optics - Volume 130, February 2017, Pages 797-805
نویسندگان
Weishi Peng,