کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5026150 | 1470598 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Feature extraction is an important issue of brain-computer interface (BCI). It determines whether the classification performance is high or low. In this paper, a new type of feature called “symmetrical feature” is proposed. This innovative feature extraction method is built upon the features “common spatial pattern (CSP)” algorithm. After an electroencephalographic signal is enhanced, class discrimination using the CSP algorithm can be extracted using optimal symmetrical axis chosen by a 10-fold cross-validation technique. Simulation results from nine data sets provided by brain-computer interface competition III and Iva showed that, on average, the proposed symmetrical feature can be combined with the CSP power band feature to boost the performance of the classification in a BCI system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - International Journal for Light and Electron Optics - Volume 129, January 2017, Pages 163-171
Journal: Optik - International Journal for Light and Electron Optics - Volume 129, January 2017, Pages 163-171
نویسندگان
Seung-Min Park, Xinyang Yu, Pharino Chum, Woo-Young Lee, Kwee-Bo Sim,