کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5032305 | 1369980 | 2016 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Full-field measurement of micromotion around a cementless femoral stem using micro-CT imaging and radiopaque markers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی پزشکی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A good primary stability of cementless femoral stems is essential for the long-term success of total hip arthroplasty. Experimental measurement of implant micromotion with linear variable differential transformers is commonly used to assess implant primary stability in pre-clinical testing. But these measurements are often limited to a few distinct points at the interface. New techniques based on micro-computed tomography (micro-CT) have recently been introduced, such as Digital Volume Correlation (DVC) or markers-based approaches. DVC is however limited to measurement around non-metallic implants due to metal-induced imaging artifacts, and markers-based techniques are confined to a small portion of the implant. In this paper, we present a technique based on micro-CT imaging and radiopaque markers to provide the first full-field micromotion measurement at the entire bone-implant interface of a cementless femoral stem implanted in a cadaveric femur. Micromotion was measured during compression and torsion. Over 300 simultaneous measurement points were obtained. Micromotion amplitude ranged from 0 to 24 µm in compression and from 0 to 49 µm in torsion. Peak micromotion was distal in compression and proximal in torsion. The technique bias was 5.1 µm and its repeatability standard deviation was 4 µm. The method was thus highly reliable and compared well with results obtained with linear variable differential transformers (LVDTs) reported in the literature. These results indicate that this micro-CT based technique is perfectly relevant to observe local variations in primary stability around metallic implants. Possible applications include pre-clinical testing of implants and validation of patient-specific models for pre-operative planning.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 49, Issue 16, 8 December 2016, Pages 4002-4008
Journal: Journal of Biomechanics - Volume 49, Issue 16, 8 December 2016, Pages 4002-4008
نویسندگان
V. Malfroy Camine, H.A. Rüdiger, D.P. Pioletti, A. Terrier,