کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5032515 | 1369985 | 2016 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improving the ground reaction force prediction accuracy using one-axis plantar pressure: Expansion of input variable for neural network
ترجمه فارسی عنوان
بهبود دقت پیش بینی نیروی واکنش زمین با استفاده از یک فشار محور فشار: گسترش متغیر ورودی برای شبکه عصبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
دقت پیش بینی، انتخاب متغیر ورودی نیروی واکنش زمین و لحظه، فشار پاستار، شبکه عصبی موجک،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی پزشکی
چکیده انگلیسی
In this study, we describe a method to predict 6-axis ground reaction forces based solely on plantar pressure (PP) data obtained from insole type measurement devices free of space limitations. Because only vertical force is calculable from PP data, a wavelet neural network derived from a non-linear mapping function was used to obtain 3-axis ground reaction force in medial-lateral (GRFML), anterior-posterior (GRFAP) and vertical (GRFV) and 3-axis ground reaction moment in sagittal (GRFS), frontal (GRFF) and transverse (GRFT) data for the remaining axes and planes. As the prediction performance of nonlinear models depends strongly on input variables, in this study, three input variables - accumulated PP with respect to time, center of pressure (COP) pattern, and measurements of the opposite foot, which are calculable only with a PP device - were considered in order to improve prediction performance. To conduct this study, the golf swing motions of 80 subjects were characterized as unilateral movement and GRF patterns as functions of individual characteristics. The prediction model was verified with 5-fold cross-validation utilizing the measured values of two force plates. As a result, prediction model (correlation coefficient, r=0.73-0.97) utilized accumulated PP and PP data of the opposite foot and showed the highest prediction accuracy in left-foot GRFV, GRMF, GRMT and right-foot GRFAP, GRFML, GRMF, GRMT. Likewise, another prediction model (r=0.83-0.98) utilized accumulated PP and COP patterns as input and showed the best accuracy in left-foot GRFAP, GRFML, GRMS and right-foot GRFV, GRMS. New methods based on the findings of the present study are expected to help resolve problems such as spatial limitation and limited analyzable motions in existing GRF measurement processes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 49, Issue 14, 3 October 2016, Pages 3153-3161
Journal: Journal of Biomechanics - Volume 49, Issue 14, 3 October 2016, Pages 3153-3161
نویسندگان
Su-Bin Joo, Seung Eel Oh, Joung Hwan Mun,