کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5042523 1474625 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The cave of shadows: Addressing the human factor with generalized additive mixed models
ترجمه فارسی عنوان
غار سایه ها: با فاکتور انسانی با مدل های ترکیبی افزایشی تعمیم پذیرفته شده است
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
چکیده انگلیسی


- GAMs can model autocorrelations in experimental data.
- These autocorrelations arise due to learning, fatigue, or fluctuations in attention.
- Three data sets illustrate that this human factor interacts with predictors of interest.
- Within the framework of GAMs, maximal models are ill-advised.
- Alternative regression modeling strategies are discussed.

Generalized additive mixed models are introduced as an extension of the generalized linear mixed model which makes it possible to deal with temporal autocorrelational structure in experimental data. This autocorrelational structure is likely to be a consequence of learning, fatigue, or the ebb and flow of attention within an experiment (the 'human factor'). Unlike molecules or plots of barley, subjects in psycholinguistic experiments are intelligent beings that depend for their survival on constant adaptation to their environment, including the environment of an experiment. Three data sets illustrate that the human factor may interact with predictors of interest, both factorial and metric. We also show that, especially within the framework of the generalized additive model, in the nonlinear world, fitting maximally complex models that take every possible contingency into account is ill-advised as a modeling strategy. Alternative modeling strategies are discussed for both confirmatory and exploratory data analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Memory and Language - Volume 94, June 2017, Pages 206-234
نویسندگان
, , , ,