کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
504326 | 864293 | 2011 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Image segmentation and activity estimation for microPET 11C-raclopride images using an expectation-maximum algorithm with a mixture of Poisson distributions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The objective of this study was to use a mixture of Poisson (MOP) model expectation maximum (EM) algorithm for segmenting microPET images. Simulated rat phantoms with partial volume effect and different noise levels were generated to evaluate the performance of the method. The partial volume correction was performed using an EM deblurring method before the segmentation. The EM–MOP outperforms the EM–MOP in terms of the estimated spatial accuracy, quantitative accuracy, robustness and computing efficiency. To conclude, the proposed EM–MOP method is a reliable and accurate approach for estimating uptake levels and spatial distributions across target tissues in microPET 11C-raclopride imaging studies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computerized Medical Imaging and Graphics - Volume 35, Issue 5, July 2011, Pages 417–426
Journal: Computerized Medical Imaging and Graphics - Volume 35, Issue 5, July 2011, Pages 417–426
نویسندگان
Kuan-Hao Su, Jay S. Chen, Jih-Shian Lee, Chi-Min Hu, Chi-Wei Chang, Yuan-Hwa Chou, Ren-Shyan Liu, Jyh-Cheng Chen,