کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
504934 864452 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
ترجمه فارسی عنوان
تشخیص خودکار فیبریلاسیون دهلیزی با استفاده از تبدیل موجک ثابت و ماشین بردار پشتیبانی
کلمات کلیدی
فیبریلاسیون دهلیزی؛ ماشین بردار پشتیبانی؛ تبدیل موجک؛ آریتمی قلبی. آنتروپی انرژی ورودی؛ تجزیه و تحلیل منحنی ROC
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• A novel method for automatic detection of Atrial fibrillation (AF) is proposed.
• This method eliminates the need for P and/or R peak detection.
• Sensitivity and specificity of the method is 97.0% and 97.1%, respectively.
• It holds several interesting properties suitable for practical applications.

BackgroundAtrial fibrillation (AF) is the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Automatic detection of AF could substantially help in early diagnosis, management and consequently prevention of the complications associated with chronic AF. In this paper, we propose a novel method for automatic AF detection.MethodStationary wavelet transform and support vector machine have been employed to detect AF episodes. The proposed method eliminates the need for P-peak or R-Peak detection (a pre-processing step required by many existing algorithms), and hence its performance (sensitivity, specificity) does not depend on the performance of beat detection. The proposed method has been compared with those of the existing methods in terms of various measures including performance, transition time (detection delay associated with transitioning from a non-AF to AF episode), and computation time (using MIT-BIH Atrial Fibrillation database).ResultsResults of a stratified 2-fold cross-validation reveals that the area under the Receiver Operative Characteristics (ROC) curve of the proposed method is 99.5%. Moreover, the method maintains its high accuracy regardless of the choice of the parameters׳ values and even for data segments as short as 10 s. Using the optimal values of the parameters, the method achieves sensitivity and specificity of 97.0% and 97.1%, respectively.DiscussionThe proposed AF detection method has high sensitivity and specificity, and holds several interesting properties which make it a suitable choice for practical applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 60, 1 May 2015, Pages 132–142
نویسندگان
, , ,