کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
505191 864481 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method
چکیده انگلیسی

We tested four machine learning methods, support vector machine (SVM), k-nearest neighbor, back-propagation neural network and C4.5 decision tree for their capability in predicting spleen tyrosine kinase (Syk) inhibitors by using 2592 compounds which are more diverse than those in other studies. The recursive feature elimination method was used for improving prediction performance and selecting molecular descriptors responsible for distinguishing Syk inhibitors and non-inhibitors. Among four machine learning models, SVM produces the best performance at 99.18% for inhibitors and 98.82% for non-inhibitors, respectively, indicating that the SVM is potentially useful for facilitating the discovery of Syk inhibitors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 43, Issue 4, 1 May 2013, Pages 395–404
نویسندگان
, , , , ,