کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
505296 | 864489 | 2013 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Early detection of coronary artery disease in patients studied with magnetocardiography: An automatic classification system based on signal entropy
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We propose an automatic system for the classification of coronary artery disease (CAD) based on entropy measures of MCG recordings. Ten patients with coronary artery narrowing≥or≤50% were categorized by a multilayer perceptron (MLP) neural network based on Linear Discriminant Analysis (LDA). Best results were obtained with MCG at rest: 99% sensitivity, 97% specificity, 98% accuracy, 96% and 99% positive and negative predictive values for single heartbeats. At patient level, these results correspond to a correct classification of all patients. The classifier's suitability to detect CAD-induced changes on the MCG at rest was validated with surrogate data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 43, Issue 2, 1 February 2013, Pages 144–153
Journal: Computers in Biology and Medicine - Volume 43, Issue 2, 1 February 2013, Pages 144–153
نویسندگان
Martin Steinisch, Paul R. Torke, Jens Haueisen, Birgit Hailer, Dietrich Grönemeyer, Peter Van Leeuwen, Silvia Comani,