کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
505296 864489 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Early detection of coronary artery disease in patients studied with magnetocardiography: An automatic classification system based on signal entropy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Early detection of coronary artery disease in patients studied with magnetocardiography: An automatic classification system based on signal entropy
چکیده انگلیسی

We propose an automatic system for the classification of coronary artery disease (CAD) based on entropy measures of MCG recordings. Ten patients with coronary artery narrowing≥or≤50% were categorized by a multilayer perceptron (MLP) neural network based on Linear Discriminant Analysis (LDA). Best results were obtained with MCG at rest: 99% sensitivity, 97% specificity, 98% accuracy, 96% and 99% positive and negative predictive values for single heartbeats. At patient level, these results correspond to a correct classification of all patients. The classifier's suitability to detect CAD-induced changes on the MCG at rest was validated with surrogate data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 43, Issue 2, 1 February 2013, Pages 144–153
نویسندگان
, , , , , , ,