کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
505321 | 864491 | 2012 | 11 صفحه PDF | سفارش دهید | دانلود رایگان |

Current computational predictions of splice sites largely depend on the sequence patterns of known intronic sequence features (ISFs) described in the classical intron definition model (IDM). The computation-oriented IDM (CO-IDM) clearly provides more specific and concrete information for describing intron flanks of splice sites (IFSSs). In the paper, we proposed a novel approach of fuzzy decision trees (FDTs) which utilize (1) weighted ISFs of twelve uni-frame patterns (UFPs) and forty-five multi-frame patterns (MFPs) and (2) gain ratios to improve the performances in identifying an intron. First, we fuzzified extracted features from genomic sequences using membership functions with an unsupervised self-organizing map (SOM) technique. Then, we brought in different viewpoints of globally weighting and crossly referring in generating fuzzy rules, which are interpretable and useful for biologists to verify whether a sequence is an intron or not. Finally, the experimental results revealed the effectiveness of the proposed method in improving the identification accuracy. Besides, we also implemented an on-line intronic identifier to infer an unknown genomic sequence.
Journal: Computers in Biology and Medicine - Volume 42, Issue 1, January 2012, Pages 112–122