کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
505321 864491 2012 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Intron identification approaches based on weighted features and fuzzy decision trees
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Intron identification approaches based on weighted features and fuzzy decision trees
چکیده انگلیسی

Current computational predictions of splice sites largely depend on the sequence patterns of known intronic sequence features (ISFs) described in the classical intron definition model (IDM). The computation-oriented IDM (CO-IDM) clearly provides more specific and concrete information for describing intron flanks of splice sites (IFSSs). In the paper, we proposed a novel approach of fuzzy decision trees (FDTs) which utilize (1) weighted ISFs of twelve uni-frame patterns (UFPs) and forty-five multi-frame patterns (MFPs) and (2) gain ratios to improve the performances in identifying an intron. First, we fuzzified extracted features from genomic sequences using membership functions with an unsupervised self-organizing map (SOM) technique. Then, we brought in different viewpoints of globally weighting and crossly referring in generating fuzzy rules, which are interpretable and useful for biologists to verify whether a sequence is an intron or not. Finally, the experimental results revealed the effectiveness of the proposed method in improving the identification accuracy. Besides, we also implemented an on-line intronic identifier to infer an unknown genomic sequence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 42, Issue 1, January 2012, Pages 112–122
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت