کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
505616 | 864524 | 2009 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A 9-state hidden Markov model using protein secondary structure information for protein fold recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In protein fold recognition, the main disadvantage of hidden Markov models (HMMs) is the employment of large-scale model architectures which require large data sets and high computational resources for training. Also, HMMs must consider sequential information about secondary structures of proteins, to improve prediction performance and reduce model parameters. Therefore, we propose a novel method for protein fold recognition based on a hidden Markov model, called a 9-state HMM. The method can (i) reduce the number of states using secondary structure information about proteins for each fold and (ii) recognize protein folds more accurately than other HMMs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 39, Issue 6, June 2009, Pages 527–534
Journal: Computers in Biology and Medicine - Volume 39, Issue 6, June 2009, Pages 527–534
نویسندگان
Sun Young Lee, Jong Yun Lee, Kwang Su Jung, Keun Ho Ryu,