کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
505616 864524 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A 9-state hidden Markov model using protein secondary structure information for protein fold recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A 9-state hidden Markov model using protein secondary structure information for protein fold recognition
چکیده انگلیسی

In protein fold recognition, the main disadvantage of hidden Markov models (HMMs) is the employment of large-scale model architectures which require large data sets and high computational resources for training. Also, HMMs must consider sequential information about secondary structures of proteins, to improve prediction performance and reduce model parameters. Therefore, we propose a novel method for protein fold recognition based on a hidden Markov model, called a 9-state HMM. The method can (i) reduce the number of states using secondary structure information about proteins for each fold and (ii) recognize protein folds more accurately than other HMMs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 39, Issue 6, June 2009, Pages 527–534
نویسندگان
, , , ,