کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5079219 | 1477524 | 2016 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An enhanced sample average approximation method for stochastic optimization
ترجمه فارسی عنوان
یک روش تقریبی برای نمونه بهینه شده برای بهینه سازی تصادفی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
چکیده انگلیسی
Choosing the appropriate sample size in Sample Average Approximation (SAA) method is very challenging. Inappropriate sample size can lead to the generation of low quality solutions with high computational burden. To overcome this challenge, our study proposes an enhanced SAA algorithm that utilizes clustering techniques to dynamically update the sample sizes and offers high quality solutions in a reasonable amount of time. We evaluate this proposed algorithm in the context of a facility location problem [FLP]. A number of numerical experiments (e.g., impact of different clustering techniques, fixed vs. dynamic clusters) are performed for various problem instances to illustrate the effectiveness of the proposed method. Results indicate that on average, enhanced SAA with fixed clustering size and dynamic clustering size solves [FLP] almost 631% and 699% faster than the basic SAA algorithm, respectively. Furthermore, it is observed that there is no single winner among the clustering techniques to solve all the problem instances of enhanced SAA algorithm and the performance is highly impacted by the size of the problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Production Economics - Volume 182, December 2016, Pages 230-252
Journal: International Journal of Production Economics - Volume 182, December 2016, Pages 230-252
نویسندگان
Adindu Emelogu, Sudipta Chowdhury, Mohammad Marufuzzaman, Linkan Bian, Burak Eksioglu,