کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5079302 1477529 2016 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of Machine Learning methods applied to the estimation of manufacturing cost of jet engine components
ترجمه فارسی عنوان
مقایسه روش های یادگیری ماشین های کاربردی برای ارزیابی هزینه تولید اجزای موتور جت
کلمات کلیدی
مدل هزینه یابی ماشین، هزینه ساخت، عملکرد تولید اقتصادی، طراحی به هزینه، گرادیان درختان را افزایش داد، رگرسیون بردار پشتیبانی،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
چکیده انگلیسی
This paper compares the performance of five statistical models on the estimation of manufacturing cost of jet engine components, during the early design phase and using real industrial data. The analysis shows that recent techniques such as Gradient Boosted Trees and Support Vector Regression are up to two times more efficient than the ones typically encountered in the literature (Multiple Linear Regression and Artificial Neural Networks). If goodness-of-fit and predictive accuracy remain crucial to assess the performance of a model, other criteria such as computational cost, easiness to train or interpretability should be considered when selecting a statistical method for estimating the manufacturing cost of mechanical parts. Ideally, cost estimators should rely on several statistical models concurrently, as their distinct characteristics yield complementary views on the drivers of manufacturing cost. Finally, some engineering insights revealed by the statistical analysis are presented. They include the ranking and quantification of the most important cost drivers, the approximation of the economic production function of component cost according to accumulated production volume and a different view on the traditional breakdown of manufacturing cost of some jet engine components. As a conclusion, Machine Learning appears to be an effective, affordable, accurate and scalable technique to cost mechanical parts in the early stage of the design process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Production Economics - Volume 178, August 2016, Pages 109-119
نویسندگان
, , , ,