| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5106315 | 1481430 | 2018 | 11 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Some theoretical results on forecast combinations
												
											ترجمه فارسی عنوان
													برخی نتایج نظری در ترکیب پیش بینی
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												ترکیب پیش بینی؛ میانگین. وزن مطلوب؛ خطای میانگین مربعات
																																							
												موضوعات مرتبط
												
													علوم انسانی و اجتماعی
													مدیریت، کسب و کار و حسابداری
													کسب و کار و مدیریت بین المللی
												
											چکیده انگلیسی
												This paper proposes a framework for the analysis of the theoretical properties of forecast combination, with the forecast performance being measured in terms of mean squared forecast errors (MSFE). Such a framework is useful for deriving all existing results with ease. In addition, it also provides insights into two forecast combination puzzles. Specifically, it investigates why a simple average of forecasts often outperforms forecasts from single models in terms of MSFEs, and why a more complicated weighting scheme does not always perform better than a simple average. In addition, this paper presents two new findings that are particularly relevant in practice. First, the MSFE of a forecast combination decreases as the number of models increases. Second, the conventional approach to the selection of optimal models, based on a simple comparison of MSFEs without further statistical testing, leads to a biased selection.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 34, Issue 1, JanuaryâMarch 2018, Pages 64-74
											Journal: International Journal of Forecasting - Volume 34, Issue 1, JanuaryâMarch 2018, Pages 64-74
نویسندگان
												Felix Chan, Laurent L. Pauwels, 
											