| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 5106349 | 1481431 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Forecast evaluation tests and negative long-run variance estimates in small samples
ترجمه فارسی عنوان
تست های ارزیابی پیش بینی و برآورد واریانس طولانی مدت منفی در نمونه های کوچک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم انسانی و اجتماعی
مدیریت، کسب و کار و حسابداری
کسب و کار و مدیریت بین المللی
چکیده انگلیسی
This paper shows that the long-run variance can frequently be negative when computing standard Diebold-Mariano-type tests for equal forecast accuracy and forecast encompassing if one is dealing with multi-step-ahead predictions in small, but empirically relevant, sample sizes. We therefore consider a number of alternative approaches for dealing with this problem, including direct inference in the problem cases and the use of long-run variance estimators that guarantee positivity. The finite sample size and power of the different approaches are evaluated using extensive Monte Carlo simulation exercises. Overall, for multi-step-ahead forecasts, we find that the test recently proposed by Coroneo and Iacone (2016), which is based on a weighted periodogram long-run variance estimator, offers the best finite sample size and power performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 33, Issue 4, OctoberâDecember 2017, Pages 833-847
Journal: International Journal of Forecasting - Volume 33, Issue 4, OctoberâDecember 2017, Pages 833-847
نویسندگان
David I. Harvey, Stephen J. Leybourne, Emily J. Whitehouse,
