کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
512248 | 866395 | 2016 | 9 صفحه PDF | دانلود رایگان |
The polynomial expansion method is a useful tool to solve partial differential equations (PDEs). However, the researchers seldom use it as a major medium to solve PDEs due to its highly ill-conditioned behavior. We propose a single-scale and a multiple-scale Pascal triangle formulations to solve the linear elliptic PDEs in a simply connected domain equipped with complex boundary shape. For the former method a constant parameter R0 is required, while in the latter one all introduced scales are automatically determined by the collocation points. Then we use the multiple-scale method to solve the inverse Cauchy problems, which is very accurate and very stable against large noise to 20%. Numerical results confirm the validity of the present multiple-scale Pascal polynomial expansion method.
Journal: Engineering Analysis with Boundary Elements - Volume 62, January 2016, Pages 35–43