کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
512423 866406 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model
ترجمه فارسی عنوان
مقایسه اشکال ضعیف و قدرتمند بی قاعده محلی بر اساس راه حل های خاص برای یک مدل غیر کلاسیک انتشار دو بعدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

In the current work, a new aspect of the weak form meshless local Petrov–Galerkin method (MLPG), which is based on the particular solution is presented and well-used to numerical investigation of the two-dimensional diffusion equation with non-classical boundary condition. Two-dimensional diffusion equation with non-classical boundary condition is a challenged and complicated model in science and engineering. Also the method of approximate particular solutions (MAPS), which is based on the strong formulation is employed and performed to deal with the given non-classical problem. In both techniques an efficient technique based on the Tikhonov regularization technique with GCV function method is employed to solve the resulting ill-conditioned linear system. The obtained numerical results are presented and compared together through the tables and figures to demonstrate the validity and efficiency of the presented methods. Moreover the accuracy of the results is compared with the results reported in the literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Analysis with Boundary Elements - Volume 39, February 2014, Pages 121–128
نویسندگان
, , , ,